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Abstract 
Solutions of linear and nonlinear inverse problems, 

particularly those with special structure or for which non-

smooth solutions are expected, can be effectively 

reconstructed using local regularization methods. For 

Volterra problems, the method retains the causal structure 

of the original problem, in contrast to classical 

regularization methods, and leads to fast sequential 

numerical algorithms to solve the inverse problem.   

 

Local regularization was originally applied to the 

nonlinear Volterra problem of Hammerstein type in 

Lamm and Dai (2005), where the localized approach led 

to a two-step solution method; one linear step followed by 

one fully nonlinear step.  The method was improved upon 

in Brooks, Lamm, and Luo (2010), where advantage was 

taken of the local nature of the method in order to 

implement local regularization and an effective 

linearization strategy all at once.  The new method retains 

the causal structure of the original Volterra problem, still 

allows for fast, sequential numerical solution, however its 

numerical implementation no longer involves numerous 

inversions of a nonlinear function as required previously. 

 

We present convergence results for this new method for 

the finitely-smoothing convolution problem given noisy 

data.  The convergence is achieved with an a posteriori 

choice of the regularization parameter using an adapted 

version of a newly defined modified discrepancy principle 

in Brooks (2007). We conclude with a brief discussion of 

numerical implementation and examples.  

 

This is joint work with Patricia K. Lamm at Michigan 

State University.  
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